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Abstract

Research on the cognitive plausibility of lan-
guage models (LMs) has so far mostly concen-
trated on modelling psycholinguistic response
variables such as reading times, gaze durations
and N400/P600 EEG signals, while mostly
leaving out the dimension of what Mahowald
et al. (2023) described as formal and functional
linguistic competence, and developmental plau-
sibility. We address this gap by training a series
of GPT-like language models of different sizes
on the strict version of the BabyLM pretrain-
ing corpus, evaluating on the challenge tasks
(BLiMP, GLUE, MSGS) and an additional read-
ing time prediction task. We find a positive cor-
relation between LM size and performance on
all three challenge tasks, with different prefer-
ences for model width and depth in each of the
tasks. In contrast, a negative correlation was
found between LM size and reading time fit
of linear mixed-effects models using LM sur-
prisal as a predictor, with the second-smallest
LM achieving the largest log-likelihood reduc-
tion over a baseline model without surprisal.
This suggests that modelling processing effort
and linguistic competence may require an ap-
proach different from training GPT-like LMs
on a developmentally plausible corpus.

1 Introduction

In recent years several approaches have been taken
to test LMs for cognitive plausibility. This is usu-
ally done by using output probabilities of the LM
as a predictor for a model’s preference towards
certain linguistic structures (Roark et al., 2009;
Wilcox et al., 2020). Another strain of research
uses the output probabilities as a correlate of psy-
cholinguistic measures, e.g., N400 and P600 EEG
signals (Heilbron et al., 2019 and recently Li and
Futrell, 2023) and (self-paced) reading times (Fer-
nandez Monsalve et al., 2012). A natural question
that arises is whether cognitive plausibility should
be attributed to the model architecture itself, or to
the training regime in combination with the training
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Figure 1: Our results show that LM performance on the
BabyLM challenge tasks is negatively correlated with
perplexity on the development set of the BabyLM cor-
pus (lower perplexity leads to higher performance). In
contrast, a positive correlation (Spearman’s p = 0.4784,
p < 0.05) was found between LM perplexity and the
fit of LM surprisal to self-paced reading times from the
Natural Stories corpus (Futrell et al., 2021) in terms of
the difference in log-likelihood between a basline linear
mixed-effects model and a model using LM surprisal as
a predictor. Lines were fitted with 3 (challenge tasks) or
6 (reading times) degrees of freedom to the LMs’ aver-
age performance on the task. See Section 6 for detailed
results.

dataset. Little research has been done on the actual
neurological plausibility of large LMs (LLMs), but
Schrimpf et al. (2021) showed that the architecture
of BERT-like models is already plausible for the
next word prediction task before training: model
predictions with only the language modelling head
trained are already predictive of human brain ac-
tivity during reading and correlate well with the
predictions of the fully trained model. In contrast,
no correlation between brain activity and model
predictions was found for models trained on GLUE
(Wang et al., 2019), a natural language understand-
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ing (NLU) benchmark. This finding may mirror an
underlying difference in language processing be-
tween formal and functional linguistic competence
as introduced by Mahowald et al. (2023):

Formal linguistic competence is defined as the
"capacity required to produce and comprehend a
given language, i.e., the ability to distinguish gram-
matically correct from incorrect formations, based
either on "knowledge of and flexible use of linguis-
tic rules" or "non-rule-like statistical regularities"
(Mahowald et al., 2023). An example for the for-
mer mechanism would be the regular formation of
past tense verbs in English (look:looked), and for
the latter the formation of irregular or ablauting
past tense verbs (go:went,tread:trod).

Functional linguistic competence is defined as
"non-language-specific cognitive functions that
are required when we use language in real-world
circumstances”" (Mahowald et al., 2023) , i.e., the
ability to perform cognitive tasks with language.
GLUE is an example for a benchmark that test this
dimension of linguistic competence, with some
if its tasks (CoLA (Warstadt et al., 2019)) also
testing for aspects of formal linguistic competence.

The dichotomy between formal and func-
tional linguistic competence can be understood in
terms of Wittgenstein’s definition of the meaning
of a word as its use in a language (Wittgenstein
(1953), §43). The debate on whether statistical
learners (i.e. LMs) can learn the meaning of
a linguistic unit (word, phrase, text, etc.) in
Wittgenstein’s sense is still ongoing, with much
division between positions that strongly deny that
LMs can have such a property (Bender and Koller,
2020) and positions that advocate that they might
have it, e.g., under the condition that the LM’s
predictions are grounded in extralinguistic reality
(Bisk et al., 2020). Our study does not attempt to
find arguments in favour of either position, but to
study the implications of this dichotomy for the
paradigm of cognitive modelling.

As stated earlier, the output probabilities of LMs
lie at the basis of the application of LMs to cogni-
tive language modelling, usually in the form of a
probability distribution over a vocabulary of word
forms given either surrounding words (masked lan-
guage modelling) or preceding words (causal lan-
guage modelling). Evidence for the use of surprisal
(a word’s negative logarithmic probability in con-

text) instead of the actual probablity comes from
logarithmic effects of contextual probabilities on
processing difficulty (Shain et al., 2022). Another
approach is to evaluate the output probabilities of
a LM over a number of classes that may or may
not apply to the input sequence, usually after fine-
tuning the LM. The reliance of research in this
direction on the output probabilities of LMs has
already been criticized from multiple sides. There
is a growing body of evidence that the performance
of a LM in the typical language modelling task,
next word prediction, and measures of formal lin-
guistic competence are not correlated. Hu et al.
(2020) found no correlation between LM perplex-
ity and measures of formal linguistic competence,
while Huang et al. (2023) argue that LM surprisal
should not be assumed to be a good predictor of
psycholinguistic measures of processing difficulty
that require more than just lexical information. This
lack of correlation with psycholinguistic measures
becomes more prominent with the increasing size
of LMs (Oh and Schuler, 2022), and especially so
in extreme cases of human processing difficulty:
Arehalli et al. (2022) showed that surprisal from
LSTM-based LMs underestimates garden-path ef-
fects on reading times, while successfully predict-
ing reading times for most non-garden-path sen-
tences. This finding has been corroborated for
transformer-based LMs such as GPT-2 (Jurayj et al.,
2022) and BERT (Irwin et al., 2023).

2 BabyLM

The BabyLM challenge (Warstadt et al., 2023) in-
troduces a novel constraint to cognitively plausible
language modelling by limiting the token budget
for LM pretraining to 100 million (100M) tokens,
roughly the same amount of tokens a 13-year old
child has seen during language acquisition (Gilk-
erson et al., 2017). While the focus of the chal-
lenge is on the pretraining procedure, the evalua-
tion pipeline consists of the BLIMP (Warstadt et al.,
2020a), MSGS (Warstadt et al., 2020b) and GLUE
benchmarks, each of which aims to test for a spe-
cific dimension of linguistic competence.

BLiMP BLiMP tests for formal linguistic compe-
tence by comparing model predictions at a critical
word in pairs of grammatically acceptable and unac-
ceptable sentences, with the sentence pair only dif-
fering with respect to a single feature, e.g., whether
a determiner agrees with its antecedent in gender
or not. A model succeeds at the task if it assigns a
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higher probability to the critical word in the accept-
able sentence.

GLUE GLUE is a benchmark that requires fine-
tuning! of the LM. It tests for a wide range of NLU
problems, e.g., question answering, natural lan-
guage inference and linguistic acceptability judge-
ments, and hence can be regarded as a proxy for
the functional linguistic competence of a LM.

MSGS MSGS is a benchmark of binary classifi-
cation tasks that tests whether a LM prefers surface
generalizations over syntactic generalization by
first fine-tuning on data consistent with both types
of generalization. At inference time, items are
consistent with only one type, potentially revealing
a bias towards either generalization type.

Previous studies mainly provided insights
into the relationship of pretraining token budget
and measures of formal and functional linguistic
competence. Zhang et al. (2021) showed that
encoder-only LMs already perform well on formal
tasks such as BLiMP at a budget of 10-100M
tokens, while requiring substantially larger token
budgets to perform well on functional tasks such as
GLUE. While this research established correlations
for pretraining token budgets, similar relationships
for model size at a fixed token budget have not
yet been investigated. This study is dedicated to
finding a relationship between model size and
performance on these tasks, while simultaneously
addressing the dimension of processing effort,
which is not covered by the challenge tasks. This
is done using the strict version of the BabyLM
corpus, mainly because there is evidence that the
fit with psycholinguistic measures profits from
token budgets far larger than the 100M tokens in
the corpus (Oh and Schuler, 2023).However, we
also implicity evaluate on models that are trained
on token budgets of 10M tokens, corresponding
rather to the strict-small track in Section 7.

3 Research questions

The starting point of our work is Zhang et al.
(2021)’s finding of an earlier saturation effect (in
terms of pretraining tokens) for BLiMP as opposed
to (Super)GLUE. If performance on BLiMP is al-
ready close to the optimum after pretraining for

"During fine-tuning, we train all parameters of the pre-
trained LM as well as a randomly initialized classifier on top
of the LM.

100M tokens, we suspect that a model with rela-
tively small capacity is sufficient to reliably learn
the required syntactic and semantic features. In
contrast, the larger pretraining token budget and
model size needed for GLUE should also require a
model with higher capacity.

Studies on reading time prediction generally use
causal LMs trained on a next-word prediction task
instead of masked LMs (Oh and Schuler, 2022;
Arehalli et al., 2022; Jurayj et al., 2022) because
of their closer similarity to human language
processing. Although masked LMs such as BERT
show some word order effects (Papadimitriou
et al., 2022) and even garden-path effects (Irwin
et al., 2023), they are cognitively implausible in
the sense that they process all words in a sequence
simultaneously when predicting a word at a
masked position, rather than processing language
sequentially. This autoregressive property mirrors
human language processing, and is therefore
desirable in studies with the primary goal of
modelling human reading behaviour. We therefore
employ decoder-only, GPT-like LMs (Radford
et al., 2019) in our study, i.e., we want to answer
the following research questions:

Research question A

Are GPT-like models cognitively plausible
in the sense that they are able to acquire (a
degree of) formal and functional linguistic
competence, while being also predictive of
human processing effort?

Research question B

Can such LMs be trained on the same data
as a child has available during language ac-
quisition (100M tokens)?

\ 7

4 Previous work

Do we need transformers for cognitive plausi-
bility? Despite promising findings by Hosseini
et al. (2021), it has yet to be determined whether
transformers, and decoder-only transformer LMs in
particular, are cognitively plausible in the sense that
they are data-efficient enough to acquire human-
like? linguistic competence. Indeed, there are re-
sults that seem to partially contradict the necessity

*Here, we do not use "human-like" to imply human-level

performance, but rather that the model is subject to similar
processing constraints as a human.
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of LLMs with wide context windows in order for a
model to exhibit human-like processing behaviour.
Kuribayashi et al. (2022) showed that reducing
context length of LLMs improves the fit of a lin-
ear mixed-effects model (LME) on gaze durations,
with surprisal from a bigram GPT-2 model as a pre-
dictor yielding the largest log-likelihood reduction
over the baseline model. Wilcox et al. (2020) failed
to identify a relationship between psychometric
predictive power (A log-likelihood) and syntactic
generalization, concluding that different models
are needed for modelling human processing effort
versus syntactic generalization.

Linguistic competence vs. psycholinguistic
measures It has long been clear that LM capacity,
and subsequently LM perplexity, does not neces-
sarily correlate with human-likeness (Kuribayashi
et al., 2021). LLMs such as GPT-3 in particular
were found to have considerable disadvantages
when it comes to predicting psycholinguistic
measures from their next-word predictions: Oh
and Schuler (2022) found an inverse relationship
between both perplexity and LLM capacity, versus
fit to human reading times. The authors of this
study hypothesize that this is because transformers
have access to the full sequence context, and are
trained on large enough corpora to make use of
the information that they contain. This relationship
between model perplexity and reading times is
however not intrinsic to transformer-based LMs:
Hu et al. (2020) found a similar relationship for
LSTM LMs, though small GPT-like models have
an advantage over recurrent models.

The impact of LM size on linguistic competence
was investigated by Eldan and Li (2023), who
found that relatively small GPT2-like models
(<10M parameters) manage to produce fluent
English and can be trained on relatively small
corpora with a reduced vocabulary. Their study
also shows that the relationship still holds for small
models, while also identifying trade-offs between
model width (hidden size) and depth (number of
decoder layers).

As for training dataset size, Oh and Schuler
(2023) found that surprisal from transformer-based
LLMs gives the best fit to reading times at about
2B train tokens, across a wide range of model sizes.
The corpus used in their study is very large (300B
tokens), allowing for extensive training of a model
without repeating any data. Reaching the same
number of update steps with the much smaller

BabyLM corpus would require training for mul-
tiple epochs.

Single- vs. multi-epoch training Since the
BabyLM training data is substantially smaller than
the 2B tokens suggested by Oh and Schuler (2023),
training our models in a multi-epoch setting cannot
be avoided. Previous research has shown that re-
peating the training data can have adverse effects:
Xue et al. (2023) compared single-epoch vs. multi-
epoch training in a limited data setting and show
that multi-epoch training leads to overfitting, with
little performance being gained after the first epoch.
They also find that regularization can only partially
alleviate the overfitting problem, with dropout hav-
ing the largest effect. Not having to repeat the
training data is advantageous for downstream tasks
and psycholinguistic modelling, if a certain amount
of training data is available: Oh and Schuler (2023)
found that reading time fit deteriorates after 2B to-
kens over a wide range of model sizes. However,
it is not clear if repeating the training data would
lead to an even stronger deterioration. If the corpus
is substantially smaller than 2B tokens, repeating
the training data could have a different effect, espe-
cially if the optimum of the reading time fit depends
on the availability of the 2B tokens.

S Methodology

Modelling We use the OPT architecture by
Zhang et al. (2022) with a language modelling
head for pretraining. Following our intuition that
BLiMP should require much smaller model sizes
than MSGS and GLUE, we train a series of OPT
models of different sizes, varying only model width
(hidden size) and model depth (number of decoder
layers). In total we train 24 models varying over
4 hidden sizes lpjggen, € {192,384,768,1536}
and 6 numbers of decoder layers (lgecoder €
{1,2,4,8,16,24}). We also adjust the dimension
of the feedforward layers such that the size of the
output vector lforward = 3 X lhidden- Table 1
in Appendix A shows the resulting model sizes.
The models and all code for pretraining are im-
plemented with PyTorch (Paszke et al., 2019) and
HuggingFace transformers (Wolf et al., 2020), start-
ing from their implementation of OPT. We also
trained a new tokenizer on the training set of the
BabyLM corpus, using the same vocabulary size
|V| = 50272 as the original OPT tokenizer. We
report all results as averages over 3 random seeds
(see Appendix D for full results and standard error).
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Figure 2: Task performance by model size (higher numbers are better). Baselines can be found in Appendix D.

Training Following the Shortformer pipeline
(Press et al., 2021), each model is trained for one
epoch with an initial sequence length of 64, fol-
lowed by 4 epochs with the full sequence length of
256. The full sequence length of 256 was chosen
as a compromise between the relatively short test
items in the challenge tasks (up to 128 tokens) In
order to ensure that the model generalizes to longer
sequences we use ALiBI (Press et al., 2022) in-
stead of learned positional embeddings. This also
ensures that our models generalize to the longer se-
quences in the Natural Stories corpus. We trained
each model on a A100 GPU with 40 GB VRAM
and an effective batch size of 128, using gradient
accumulation for models that could not fit the full
batch size. We used AdamW (Loshchilov and Hut-
ter, 2019) as our optimizer with an initial learning
rate of 0.001 and weight decay of 0.001 with 2000
linear warm-up steps. We use a dropout of 0.1
following the default HuggingFace transformers
parameters for OPT.

Pretraining experiments We also experimented
with changes to the pretraining regime. We trained
models on multiple permutations of the training
dataset: ordering sequences according to length
(number of words), word length (number of charac-
ters), sequence-level perplexity from a 3-gram LM
trained on the same data, and different orderings
of the subcorpora as in Mueller and Linzen (2023).
None of these approaches resulted in significant
performance gains in terms of perplexity and per-
formance on the challenge tasks over a baseline
model trained on the concatenated BabyLLM corpus
with subsequent shuffling of the sequences.

Evaluation We evaluated all models on the
downstream tasks of the BabyLM challenge.
While these three tasks test for the linguistic
competence of a model, they do not quantify
the cognitive effort associated with language

processing. We therefore also evaluate all models
on a reading time prediction task. For each
model, we calculated surprisal on the items of
the Natural Stories Corpus (Futrell et al., 2021).
This corpus was chosen because its domain is
close to at least one of the BabyLM subcorpora
(Children’s Stories). We fitted linear mixed-effects
(LME) models with random intercepts for subject,
word and item (the id of the story); surprisal,
word frequency, word length and sentence
position as predictors and log-normalized reading
times as the response variable. The exact formula is

log(reading_time) =~
word_surprisal + len(word)
+ log(word_frequency) + position
+ (llword) + (llsubject) + (llitem)

For the reading time analysis we report the differ-
ence in log-likelihood between the models with
surprisal as a predictor over a baseline model with
only the control predictors. For all other tasks we
report accuracy.

Code We used the evaluation code provided by
the organizers of the BabyLM challenge?, with
some modifications to load custom models. The
evaluation pipeline is based on the LM-Eval frame-
work by Gao et al. (2021). Fine-tuning on GLUE
and MSGS was done with the default hyperparam-
eter settings, but we reduced the number of fine-
tuning epochs to 3 as we did not observe any im-
provements after 3 epochs. The LME models were
fitted using the ImerTest R library (Kuznetsova
et al., 2017) via the pymer4 Python package (Jolly,
2018). The code to pretrain and evaluate all models
is publicly available on GitHub*. The model with
the highest BLiMP accuracy and detailed results
for the LME models are made available at the same
*https://github.com/BabyLM/

evaluation-pipeline
*https://github.com/uds-1sv/babylm
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location, alongside instructions on how to run the
training and evaluation pipelines.

6 Results

Fine-tuning GLUE Fine-tuning on GLUE was
overall very unstable and often failed to outperform
the baseline. This was mainly due to the one-size-
fits-all approach to the fine-tuning hyperparame-
ters; we repeated several more fine-tuning runs
with different hyperparameter settings on some of
the GLUE tasks, and found that, e.g., RTE prof-
ited from a longer warm-up period (which is in
line with the findings of Mosbach et al. (2021) for
BERT-like models), but most other sub-tasks fine-
tuned with the same hyperparameters showed a
drop in performance. While we could have opti-
mized hyperparameters for all sub-tasks, the main
objective of the BabyLLM challenge is to improve
the pretraining part of the NLP pipeline. Thus, we
decided to fine-tune with the default hyperparam-
eters, only adjusting the number of epochs as we
found that the fine-tuning runs already converged
after a few epochs.

Model size Figure 2 shows the relationship be-
tween model size and task performance: While
GLUE (Spearman’s p = 0.7739, p < 17%) and
MSGS (p = 0.7148, p < 1=*) performance scales
with model size, BLIMP performance plateaus af-
ter reaching a model size of about 50M parame-
ters (p = 0.8835, p < 1=%). In contrast, reading
time fit was negatively correlated with model size
(p = —51.39, p < 0.05). All correlations are
statistically significant with p < 174, No single
model performed best on all three challenge tasks,
with large differences in the size of the best model.
Figure 1 shows that similar correlations hold for
model perplexity and task performance (BLiMP:
p = —0.9765, p < 174, GLUE: p = —0.8287,
p < 174 MSGS: p = —0.8661, p < 17%); nega-
tive correlations mean that lower perplexity leads to
higher performance. We found strong positive cor-
relations (pictured in Figure 7 in Appendix D) be-
tween performance on the challenge tasks (BLiMP
and GLUE (p = 0.8784), BLiMP and MSGS
(p = 0.9182) and GLUE and MSGS (p = 0.815)
generally with p < 17%).

Model width vs. depth While BLiMP perfor-
mance was not found to be strongly correlated with
either the number of decoder layers or hidden size,
GLUE and MSGS showed some variability based

on the number of layers. For GLUE the only con-
figuration that showed a monotonic improvement
in performance was a hidden size of 1536, with
models with more decoder layers achieving higher
accuracy in this setting. For MSGS we observed
a drop in performance for the models with 24 de-
coder layers at the largest hidden sizes (384, 768).
Overall, the effect of hidden size and number of
layers was minor when compared to overall model
size. In contrast, the best fit on the reading time
data was achieved with the second smallest model
with only 2 decoder layers and a hidden size of 192.
Figure 3 illustrates this trend: for the challenge
tasks, performance increases with the number of
layers (though not monotonically), whereas A log-
likelihood of the LME models decreases with the
number of layers at l;q4., = 192 and, to a lesser
extent, at lp;q4en, = 384, while deeper models with
more decoder layers and larger hidden sizes per-
form considerably worse.

Possible confounds The reading time analysis
suffers from several potential confounding fac-
tors: Firstly, the domain of the training data dif-
fers considerably from the data in the Natural Sto-
ries corpus. While the training data also contains
some longer texts (Wikipedia, Children’s Stories),
most of the corpora are more representative of
spoken language (Open Subtitles, BNC Spoken,
CHILDES). In addition, most sequences are rela-
tively short, with a median sequence length of 8
in the Open Subtitles corpus, which accounts for
>50% of the training data. This is considerably
less than the median sequence length of 22 in the
Natural Stories corpus. Another confounding fac-
tor might be the difference in exposure to language
data of the model and that of the participants of the
original reading time study. Futrell et al. (2021) do
not provide demographic data of their participants,
but since data collection was done via Amazon
Mechanical Turk we can safely assume that the
mean age of the participants was higher than 13,
meaning that they were exposed to considerably
more language data than the 100M tokens in the
BabyLM corpus. Although a recent study by Oh
and Schuler (2023) showed that reading time fit
(in terms of A log-likelihood) from transformer
models still profits from pretraining data multiple
orders of magnitude larger than our corpus, with an
optimum at 2B tokens, this is partially alleviated
in this study by the multiple-epoch training regime,
totalling about S00M tokens seen by each of our
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an epoch) and 1 and 5 epochs.

models. Since Oh and Schuler (2023) found that
training on more unseen tokens after reaching the
optimum leads to a quick deterioration of reading
time fit proportional to model size, it is unclear
what impact repeating the training data would have
on the reading time fit.

7 Reading time prediction in a
multi-epoch setting

Experimental setup In order to evaluate whether
the negative correlation is an artifact of the domain
mismatch between the BabyLM corpus and the
items in the Natural Stories corpus or the repetition
of the training data before reaching the optimal to-
ken budget, we conduct two additional experiments:
First, we retrain all models on the BabyLLM corpus
for a single epoch, saving intermediate checkpoints
at 100, 500, 1000, 2000 and 3000 training steps.
Then, we use the intermediate models to fit LME
models to the reading time data, using the same
formula as given in Section 5. Second, we replicate
these experiments on Wikitext-103, a corpus of
similar size that does not have the same limitations
of the BabyLLM corpus (i.e. an average sequence
length and a domain closer to the Natural Stories

corpus). The models trained on Wikitext-103 serve
as a control for the experiments on the BabyLLM cor-
pus and were not included in the final submission.
Since the results indicate that larger models yield a
worse reading time fit, we restrict the experiment
to small models (1-4 layers, all hidden sizes) and
larger models with the smallest and largest hidden
size (192 and 1536). The models are trained with
the same hyperparameter settings as the original
models, but sequence length is not reduced in the
first epoch.

Results Figure 4 shows a somewhat different pic-
ture for the models trained on Wikitext-103, with
reading time fit of smaller models increasing over
the whole pretraining procedure, while models with
lhidden > 192 almost never improve over the base-
line model. In contrast, the reading time fit of the
LMs trained on the BabyLLM data improves signif-
icantly over the baseline for shallower models (<
2 decoder layers), while staying roughly constant
for deeper and wider models (16, 24 decoder lay-
ers). However, the relationship between the number
of training steps and reading time fit is not mono-
tonic, with a slight decrease after training for 4
more epochs for the best model. While the models
trained on the Wikitext-103 dataset yield a better
fit to reading times in terms of A log-likelihood,
the basic finding on the BabyLLM data is corrobo-
rated: exposing a transformer model to multiple
repetitions of the training data before reaching the
optimal token budget does not lead to a decrease
in reading time fit, but also does not improve over
the single epoch setting in a meaningful way. The
results also show that the improved reading time fit
for lp;qden = 192 cannot be attributed to smaller
model size alone, as the deepest model with that
hidden size, 24*192 shows an improved fit over
the baseline, while 1¥384, a model with a compara-
ble number of parameters, but a larger hidden size,
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does not. In conclusion, we did not find a degrada-
tion of reading time fit when repeating the training
data, with similar effects of LM size on reading
time fit for Wikitext-103 and the BabyLLM corpus
(see Table 2 in Appendix C for Spearman’s p’s and
p-values). We also found The BabyLLM corpus to
be advantageous for this task in the sense that — in
contrast to Wikitext-103 — reading time fit from all
models improved over the baseline LME model.

8 Discussion

Correlation between BLiMP, GLUE & MSGS
The experiments presented in Section 6 provide ev-
idence for a correlation between LM performance
on BLiMP, GLUE and MSGS tasks when pretrain-
ing on the BabyLLM corpus. This correlation is
in accordance with established effects of training
dataset size (Zhang et al., 2021), and interactions
of train corpus size and model capacity (Eldan and
Li, 2023, Kaplan et al., 2020). However, no single
model achieves the highest score on all three tasks:
BLiMP shows diminishing returns for model sizes
larger than 50M tokens, while the best model on
MSGS (16*1536) is substantially smaller than the
best model on GLUE (24*1536). This discrepancy
between the best model on the BabyLLM challenge
tasks and on the reading times prediction task is
illustrated by Figure 5. The correlation between
BLiMP/MSGS and GLUE may be an artifact of
the sub-optimal fine-tuning on GLUE, failing to
outperform the baseline model. It cannot be ruled
out that the results would change when determining
the optimal hyperparameters for each sub-task indi-
vidually. However, even if the correlation were an
artifact of the pretraining data, the findings of a neg-
ative correlation between model size and reading
time fit would still hold.

Cognitive plausibility of GPT-like models The
best fit on self-paced reading times from the Nat-
ural Stories corpus was obtained with the second-
smallest model, with models with Iy;44en > 192
only slightly improving over the baseline. The sec-
ond suite of experiments in Section 7 confirms that
this is not solely caused by the multi-epoch train-
ing regime necessitated by the small token budget.
The reason for the mismatch between measures of
cognitive plausibility (reading times) and measures
of formal (BLiMP, MSGS) and functional linguis-
tic competence (GLUE) is rooted in the interac-
tion of pretraining regime and model size: While
it is feasible to train a model that performs com-

Task performance by best model
BLiMP

config

. 24%1536
. 244768
16*1536
2%192

GLUE Reading Times

MSGS

Figure 5: Performance of the best models by task. Read-
ing times A log-likelihoods are normalized in the inter-
val [0, 1].

paratively well on all four tasks on a budget of
100M tokens, the sweet spot for model size and
dataset size is reached much earlier for the reading
time prediction task than for the BabyLLM challenge
tasks. This problem could easily be resolved by
using one model when modelling reading times
(or any other psycholinguistic measure), and an-
other model when either of the forms of linguistic
competence is the aim. This might be a valid and
promising approach in a situation where the under-
standing of the research object does not depend on
the connectedness of its experimental analoga. In
the case of our research object — the human lan-
guage faculty — it may not be necessary to find
a single analogon that accounts for all its compo-
nents, but since we know that the human language
faculty is part of a unified cognitive system (with
specialized sub-units) performing the tasks which
the modern language modelling pipeline of pre-
training and fine-tuning splits up into individual
modules, it would be worthwile to move in the
direction of a unified approach that accounts for
both forms of linguistic competence and empiri-
cal evidence of processing effort. This could be
achieved through adjustments to the pretraining
regime (in terms of data, modelling objective etc.),
as suggested by the BabyLM challenge, or through
adjustments to the model architecture.

Size of transformer models The results of the
reading time prediction study on the BabyLLM cor-
pus indicate that it in fact has an advantage over
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Wikitext-103, although the LMs trained on the lat-
ter achieve larger A log-likelihoods on average:
Since the largest models fail to improve over the
baseline model if trained on Wikitext-103, it is
possible that some properties of the language in
the BabyLLM corpus facilitate the learning mecha-
nism that actuates the correlation of LM surprisal
and reading times. The reason for the worse fit
of surprisal from the larger models may be that
both Wikitext-103 and the BabyLLM corpus are not
large enough to induce the learning bias needed
to give good predictions of reading times in larger
models, with Figure 4 showing that the results on
the BabyLM corpus are much less stable than on
Wikitext-103 and the improvements over the base-
line much less sharply linear. In summary, our re-
sults lead to the following answers to our research
questions:

Result: Research question A

GPT-like LMs can be cognitively plausible
and display formal and functional linguistic
competence, although not both at the same
time...

Result: Research question B

...under the constraint of a developmentally
plausible training dataset.

9 Conclusion

Our study highlights the challenges of training a
LM that performs well on tasks requiring some de-
gree of formal and functional linguistic competence
as defined by Mahowald et al. (2023), while also
being predictive of the psycholinguistic measure
of reading times. We find that small, shallow mod-
els of less than 5SM parameters yield the best fit to
the psycholinguistic measure, while performance
on BLiMP, GLUE and MSGS improves with in-
creasing model size, although to a different degree
for each of the tasks. This has implications for re-
search on cognitively or developmentally plausible
models of human language processing: in the case
of a small, domain-specific training corpus it is not
feasible to pretrain an LLM that displays formal
linguistic competence and performs well on a read-
ing time prediction tasks, a conclusion also drawn
by Wingfield and Connell (2022). Consequently,
research in this direction has concentrated on fine-

tuning pretrained LLMs on domain-specific data,
e.g., Skrjanec et al. (2023). A promising approach
to a unified architecture could be relegating special
tasks (such as classifying a sequence as in GLUE)
to adapters (Houlsby et al., 2019), sub-networks
within a pretrained LM. This approach is common
in multilingual language modelling (Pfeiffer et al.,
2022; Alabi et al., 2022), where its success is par-
tially attributed to its ability to separate general
linguistic knowledge from language-specific infor-
mation. A similar modelling decision may be nec-
essary for cognitively plausible language models.
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Limitations

The results of the paper mainly hold for decoder-
only transformer LMs. While these LMs are closer
to human language processing in the sense that
they process language incrementally, this has some
disadvantages for reading time predictions, since
humans do not attribute equal importance to each
word, skipping some words in the process, and
typically integrate words from the left- and right-
hand context of a fixated word. While the first point
can be addressed by explicitly modelling skipping
behaviour (Hahn and Keller, 2016), the second
could require a solution closer to masked language
models.

A second limitation is the focus on self-paced
reading time as the psycholinguistic response vari-
able. Since the setup of self-paced reading studies,
with the participants observing a single word at a
time, distorts the natural reading process, the mea-
sure itself may be not that cognitively plausible.
This could be addressed by repeating the experi-
ments on corpora from eye-tracking studies such
as the Dundee corpus (Kennedy and Pynte, 2005).
There is evidence that much larger models than
those tested in the current study still improve the
fit to total reading times in less restricted experi-
mental settings (de Varda and Marelli, 2023). The
latter study also shows that the fit to psycholin-
guistic measures varies over languages and writing
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systems.

Another option is modelling brain activity pat-
terns directly by predicting N400 and P600 EEG
signals, which have the additional advantage of
providing a means of decomposing LM surprisal
without the proxy of linguistic structure, as shown
by Li and Futrell (2023).
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A  OPT models

ldecoder | hidden, | Parameters (non-embedding)
1 192 0.74
2 192 1.19
4 192 2.07
8 192 3.85
16 192 7.41
24 192 10.9
1 384 2.37
2 384 4.14
4 384 7.69
8 384 14.79
16 384 28.99
24 384 43.18
1 768 7.09
2 768 14.18
4 768 28.35
8 768 56.70
16 768 113.41
24 768 170.11
1 1536 30.69
2 1536 59.00
4 1536 115.69
8 1536 229.01
16 1536 455.67
24 1536 682.32

Table 1: OPT models sizes in million parameters by hidden size and number of decoder layers. The number
of parameters does not include the embedding table, which is always of the size le;mp X |V]| = 768 x 50272 =
38.608.896, as in OPT-128m.
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B Validation perplexity
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Figure 6: Validation perplexity by configuration and epoch on the development set of the BabyLM corpus.

C Detailed resutls: Reading time experiments

Corpus Step Spearman’s p p-value
babylm 500 -0.5913 0.0097
babylm 1000 -0.6285 0.0052
babylm 2000 -0.7833 0.0001
babylm 3000 -0.7874 0.0001
babylm 1 -0.7915 0.0001
babylm 5 -0.614 0.0067
wikitext-103 | 500 0.0815 0.7478

wikitext-103 | 1000 -0.4241 0.0794
wikitext-103 | 2000 -0.7482 0.0004
wikitext-103 | 3000 -0.7441 0.0004
wikitext-103 1 -0.7172 0.0008
wikitext-103 | 5 -0.7523 0.0003

Table 2: Spearman’s p of model size (in terms of number of parameters) and A log-likelihood over the baseline
LME model. Steps 1 and 5 refer to the first and fifth epoch.
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D Detailed results: BabyLM challenge tasks
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Figure 7: Correlation of LM performance on BLiMP vs. GLUE, BLiMP vs. MSGS, GLUE vs. MSGS.
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